1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
|
############################################################
# #
# Virtual Laboratory of Statistics in Python #
# #
# Inferential statistics with one population (12.06.2017) #
# #
# Complutense University of Madrid, Spain #
# #
# THIS SCRIPT IS PROVIDED BY THE AUTHORS "AS IS" AND #
# CAN BE USED BY ANYONE FOR THE PURPOSES OF EDUCATION #
# AND RESEARCH. #
# #
############################################################
import scipy.stats as s
# Obtaining critical values in standard normal table Z:N(0,1)
# CASE A: For example, for a level of significance of 5%
alpha=0.05; # area is the confidence level
area=1-alpha; critical_value=s.norm.ppf(area); print('Case A, -z_alpha = ', -critical_value);
# CASE B: For example, for a level of significance of 5%
alpha=0.05; half_alpha=alpha/2; # area is the confidence level and half of the significance level
area=(1-alpha)+half_alpha; critical_value=s.norm.ppf(area); print('Case B, -z_alpha/2 = ',-critical_value," z_alpha/2 = ",critical_value);
# CASE C: For example, for a level of significance of 5%
alpha=0.05; # area is the confidence level
area=1-alpha; critical_value=s.norm.ppf(area); print('Case C, z_alpha = ',critical_value);
|