1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
############################################################
# #
# Virtual Laboratory of Statistics in Python #
# #
# Inferencial statistics with two population (10.01.2017) #
# #
# Complutense University of Madrid, Spain #
# #
# THIS SCRIPT IS PROVIDED BY THE AUTHORS "AS IS" AND #
# CAN BE USED BY ANYONE FOR THE PURPOSES OF EDUCATION #
# AND RESEARCH. #
# #
############################################################
import math
import numpy as np import scipy.stats as s import statistics as ss import matplotlib.pyplot as plt import pylab
# TWO POPULATIONS
# Declare here the name of the data file
col1, col2 = np.loadtxt('datafile.dat', unpack=True)
# Summary statistics
print(' Grupo 1 Grupo 2 ') print('================================') print('n =',len(col1),' ',len(col2)) print('Minimum = %.2f' % min(col1),' %.2f' %min(col2)) print('Maximum = %.2f' % max(col1),' %.2f' % max(col2)) print('Rank = %.2f' % (max(col1)-min(col1)),' %.2f' % (max(col2)-min(col2))) print('Average = %.2f' % ss.mean(col1),' %.2f' % ss.mean(col2)) print('Median = %.2f' % ss.median(col1),' %.2f' % ss.median(col2)) print('Q1 = %.2f' % np.percentile(col1,25),' %.2f' % np.percentile(col2,25)) print('Q2 = %.2f' % np.percentile(col1,50),' %.2f' % np.percentile(col2,50)) print('Q3 = %.2f' % np.percentile(col1,75),' %.2f' % np.percentile(col2,75)) print('Variance = %.2f' % ss.variance(col1),' %.2f' % ss.variance(col2)) print('Stand. dev. = %.2f' % ss.stdev(col1),' %.2f' % ss.stdev(col2)) print('Stand. error of the mean = %.2f' % s.sem(col1),' %.2f' % s.sem(col2))
# Box-and-Whisker plot
plt.figure() plt.boxplot([col1,col2], 1,' ')
# Scatter plot
y_data=[np.random.random() for x in range (0, len(col1))] plt.figure() plt.scatter(col1, y_data, color="red", marker="^")
y_data=[np.random.random() for x in range (0, len(col2))] plt.figure() plt.scatter(col2, y_data, color="red", marker="+")
# Normal probability plot
plt.figure() s.probplot(col1, dist="norm", plot=pylab) pylab.show()
plt.figure() s.probplot(col2, dist="norm", plot=pylab) pylab.show()
# Gaussian histogram
plt.hist(col1) plt.title("Gaussian Histogram") plt.xlabel("Value") plt.ylabel("Frequency") plt.show()
plt.hist(col2) plt.title("Gaussian Histogram") plt.xlabel("Value") plt.ylabel("Frequency") plt.show()
# Histogram
# histtype= normed=0 1 'bar' 'step', cumulative=0 1
bins1=round(1+3.222*math.log10(len(col1))) bins2=round(1+3.222*math.log10(len(col2))) plt.figure() plt.hist(col1,bins1,normed=0,color='green',alpha=0.8, histtype='bar', cumulative=0) plt.hist(col2,bins2,normed=0,color='yellow',alpha=0.8, histtype='bar', cumulative=0) pylab.show()
# Normality test
print() print("Normality tests (Sample 1): ") print() normed_datos=(col1-ss.mean(col1))/ss.stdev(col1) kolmogorov_results=s.kstest(normed_datos,'norm') print("Kolmogorov = ",kolmogorov_results) shapiro_results=s.shapiro(col1) print("Shapiro-Wilks = ",shapiro_results) agostino_results=s.mstats.normaltest(col1) print("D’Agostino = ",agostino_results) anderson_results=s.anderson(normed_datos,'norm') print("Anderson-Darling = ",anderson_results) print() print() print("Normality tests (Sample 2): ") print() normed_datos=(col1-ss.mean(col2))/ss.stdev(col2) kolmogorov_results=s.kstest(normed_datos,'norm') print("Kolmogorov = ",kolmogorov_results) shapiro_results=s.shapiro(col2) print("Shapiro-Wilks = ",shapiro_results) agostino_results=s.mstats.normaltest(col2) print("D’Agostino = ",agostino_results) anderson_results=s.anderson(normed_datos,'norm') print("Anderson-Darling = ",anderson_results) print()
print() print("Test for homogeneity of variance: ") print() # F-test (Fisher test)
alpha = 0.05 F = ss.variance(col1) / ss.variance(col2) df1 = len(col1) - 1; df2 = len(col2) - 1
p_value1 = s.f.cdf(F, df1, df2) # p_value2=s.f(df1, df2).cdf(F) Equivalent expression
print('F-test:',F,' p-value = ',2*p_value1); print() bart_result,p_value=s.bartlett(col1,col2) print('Bartlett test: ',bart_result,' p-value = ',p_value) print() levene_result,p_value=s.levene(col1,col2) print('Levene test: ',levene_result,' p-value = ',p_value) # Two samples t-test
# test assumes the two groups have the same variance...
t_stat, p_value = s.ttest_ind(col1, col2) # test assumes the two groups have different variances...
t_stat_u, p_value_u = s.ttest_ind(col1, col2, equal_var=False) print() print('Test for means:') print("==============================================================") print("t-test (equal variance) : ",t_stat," ",p_value) if p_value>=0.05: print("ACCEPT H0") else: print("REJECT H0") print() print("t-test (different variance) : ",t_stat_u," ",p_value_u) if p_value_u>=0.05: print("ACCEPT H0") else: print("REJECT H0") print() # Two samples Mann Whitney U test
u_stat, p_value = s.mannwhitneyu(col1,col2) print("Wilcoxon test (Mann Whitney U test): ",u_stat," ",p_value) if p_value>=0.05: print("ACCEPT H0") else: print("REJECT H0") print()
|