1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
############################################################
#                                                          #
#         Virtual Laboratory of Statistics in Python       #
#                                                          #
#  Inferencial statistics with two population (10.01.2017) #
#                                                          #                
#         Complutense University of Madrid, Spain          #
#                                                          #
#   THIS SCRIPT IS PROVIDED BY THE AUTHORS "AS IS" AND     #
#   CAN BE USED BY ANYONE FOR THE PURPOSES OF EDUCATION    #
#   AND RESEARCH.                                          #
#                                                          #
############################################################
import math
import numpy as np 
import scipy.stats as s
import statistics as ss
import matplotlib.pyplot as plt
import pylab # TWO POPULATIONS # Declare here the name of the data file col1, col2 = np.loadtxt('datafile.dat', unpack=True)

# Summary statistics print(' Grupo 1 Grupo 2 ')
print('================================')
print('n =',len(col1),' ',len(col2))
print('Minimum = %.2f' % min(col1),' %.2f' %min(col2))
print('Maximum = %.2f' % max(col1),' %.2f' % max(col2))
print('Rank = %.2f' % (max(col1)-min(col1)),' %.2f' % (max(col2)-min(col2)))
print('Average = %.2f' % ss.mean(col1),' %.2f' % ss.mean(col2))
print('Median = %.2f' % ss.median(col1),' %.2f' % ss.median(col2))
print('Q1 = %.2f' % np.percentile(col1,25),' %.2f' % np.percentile(col2,25))
print('Q2 = %.2f' % np.percentile(col1,50),' %.2f' % np.percentile(col2,50))
print('Q3 = %.2f' % np.percentile(col1,75),' %.2f' % np.percentile(col2,75))
print('Variance = %.2f' % ss.variance(col1),' %.2f' % ss.variance(col2))
print('Stand. dev. = %.2f' % ss.stdev(col1),' %.2f' % ss.stdev(col2))
print('Stand. error of the mean = %.2f' % s.sem(col1),' %.2f' % s.sem(col2))

# Box-and-Whisker plot plt.figure()
plt.boxplot([col1,col2], 1,' ')

# Scatter plot y_data=[np.random.random() for x in range (0, len(col1))]
plt.figure()
plt.scatter(col1, y_data, color="red", marker="^")

y_data=[np.random.random() for x in range (0, len(col2))]
plt.figure()
plt.scatter(col2, y_data, color="red", marker="+")


# Normal probability plot plt.figure()
s.probplot(col1, dist="norm", plot=pylab)
pylab.show()

plt.figure()
s.probplot(col2, dist="norm", plot=pylab)
pylab.show()

# Gaussian histogram plt.hist(col1)
plt.title("Gaussian Histogram")
plt.xlabel("Value")
plt.ylabel("Frequency")
plt.show()

plt.hist(col2)
plt.title("Gaussian Histogram")
plt.xlabel("Value")
plt.ylabel("Frequency")
plt.show()

# Histogram # histtype= normed=0 1 'bar' 'step', cumulative=0 1 bins1=round(1+3.222*math.log10(len(col1)))
bins2=round(1+3.222*math.log10(len(col2)))
plt.figure()
plt.hist(col1,bins1,normed=0,color='green',alpha=0.8, histtype='bar', cumulative=0)
plt.hist(col2,bins2,normed=0,color='yellow',alpha=0.8, histtype='bar', cumulative=0)
pylab.show()


# Normality test print()
print("Normality tests (Sample 1): ")
print()
normed_datos=(col1-ss.mean(col1))/ss.stdev(col1)
kolmogorov_results=s.kstest(normed_datos,'norm')
print("Kolmogorov = ",kolmogorov_results)
shapiro_results=s.shapiro(col1)
print("Shapiro-Wilks = ",shapiro_results)
agostino_results=s.mstats.normaltest(col1)
print("D’Agostino = ",agostino_results)
anderson_results=s.anderson(normed_datos,'norm')
print("Anderson-Darling = ",anderson_results)
print()
print()
print("Normality tests (Sample 2): ")
print()
normed_datos=(col1-ss.mean(col2))/ss.stdev(col2)
kolmogorov_results=s.kstest(normed_datos,'norm')
print("Kolmogorov = ",kolmogorov_results)
shapiro_results=s.shapiro(col2)
print("Shapiro-Wilks = ",shapiro_results)
agostino_results=s.mstats.normaltest(col2)
print("D’Agostino = ",agostino_results)
anderson_results=s.anderson(normed_datos,'norm')
print("Anderson-Darling = ",anderson_results)
print()

print()
print("Test for homogeneity of variance: ")
print()
# F-test (Fisher test) alpha = 0.05
F = ss.variance(col1) / ss.variance(col2)
df1 = len(col1) - 1; df2 = len(col2) - 1 p_value1 = s.f.cdf(F, df1, df2)
# p_value2=s.f(df1, df2).cdf(F) Equivalent expression print('F-test:',F,' p-value = ',2*p_value1);
print()
bart_result,p_value=s.bartlett(col1,col2)
print('Bartlett test: ',bart_result,' p-value = ',p_value)
print()
levene_result,p_value=s.levene(col1,col2)
print('Levene test: ',levene_result,' p-value = ',p_value)


# Two samples t-test # test assumes the two groups have the same variance... t_stat, p_value = s.ttest_ind(col1, col2)
# test assumes the two groups have different variances... t_stat_u, p_value_u = s.ttest_ind(col1, col2, equal_var=False)
print()
print('Test for means:')
print("==============================================================")
print("t-test (equal variance) : ",t_stat," ",p_value)
if p_value>=0.05:
print("ACCEPT H0")
else:
print("REJECT H0")
print()
print("t-test (different variance) : ",t_stat_u," ",p_value_u)
if p_value_u>=0.05:
print("ACCEPT H0")
else:
print("REJECT H0")
print()
# Two samples Mann Whitney U test u_stat, p_value = s.mannwhitneyu(col1,col2)
print("Wilcoxon test (Mann Whitney U test): ",u_stat," ",p_value)
if p_value>=0.05:
print("ACCEPT H0")
else:
print("REJECT H0")
print()