1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
############################################################
#                                                          #
#         Virtual Laboratory of Statistics in Python       #
#                                                          #
#     General Linear Models: One way ANOVA  (27.07.2017)   #
#                                                          #                
#         Complutense University of Madrid, Spain          #
#                                                          #
#   THIS SCRIPT IS PROVIDED BY THE AUTHORS "AS IS" AND     #
#   CAN BE USED BY ANYONE FOR THE PURPOSES OF EDUCATION    #
#   AND RESEARCH.                                          #
#                                                          #
############################################################
import math
import numpy as np 
import scipy.stats as s
import statistics as ss
import matplotlib.pyplot as plt import pylab #from statsmodels.stats.multicomp import pairwise_tukeyhsd from statsmodels.stats.multicomp import MultiComparison

# ANOVA ONE-WAY # Declare here the name of the data file col1, col2, col3 = np.loadtxt(filedata.dat, unpack=True)
col_x, col_Group = np.loadtxt(filedata2.dat, unpack=True)

# Box-and-Whisker plot plt.figure()
plt.boxplot([col1,col2, col3], 1,' ')

# Scatter plot y_data=[np.random.random() for x in range (0, len(col1))]
plt.figure()
plt.scatter(col1, y_data, color="red", marker="^")

y_data=[np.random.random() for x in range (0, len(col2))]
plt.figure()
plt.scatter(col2, y_data, color="red", marker="+")

y_data=[np.random.random() for x in range (0, len(col3))]
plt.figure()
plt.scatter(col2, y_data, color="red", marker="+")

# Normal probability plot plt.figure()
s.probplot(col1, dist="norm", plot=pylab)
pylab.show()

plt.figure()
s.probplot(col2, dist="norm", plot=pylab)
pylab.show()

plt.figure()
s.probplot(col3, dist="norm", plot=pylab)
pylab.show()

# Histogram # histtype= normed=0 1 'bar' 'step', cumulative=0 1 bins1=round(1+3.222*math.log10(len(col1)))
bins2=round(1+3.222*math.log10(len(col2)))
bins3=round(1+3.222*math.log10(len(col3)))
plt.figure()
plt.hist(col1,bins1,normed=0,color='green',alpha=0.8, histtype='bar', cumulative=0)
plt.hist(col2,bins2,normed=0,color='yellow',alpha=0.8, histtype='bar', cumulative=0)
plt.hist(col3,bins3,normed=0,color='blue',alpha=0.8, histtype='bar', cumulative=0)
pylab.show()


# Normality tests print()
print("Normality tests (Sample 1): ")
print()
normed_datos=(col1-ss.mean(col1))/ss.stdev(col1)
kolmogorov_results=s.kstest(normed_datos,'norm')
print("Kolmogorov = ",kolmogorov_results)
shapiro_results=s.shapiro(col1)
print("Shapiro-Wilks = ",shapiro_results)
agostino_results=s.mstats.normaltest(col1)
print("D’Agostino = ",agostino_results)
anderson_results=s.anderson(normed_datos,'norm')
print("Anderson-Darling = ",anderson_results)
print()
print()
print("Normality tests (Sample 2): ")
print()
normed_datos=(col2-ss.mean(col2))/ss.stdev(col2)
kolmogorov_results=s.kstest(normed_datos,'norm')
print("Kolmogorov = ",kolmogorov_results)
shapiro_results=s.shapiro(col2)
print("Shapiro-Wilks = ",shapiro_results)
agostino_results=s.mstats.normaltest(col2)
print("D’Agostino = ",agostino_results)
anderson_results=s.anderson(normed_datos,'norm')
print("Anderson-Darling = ",anderson_results)
print()
print()
print("Normality tests (Sample 3): ")
print()
normed_datos=(col3-ss.mean(col3))/ss.stdev(col3)
kolmogorov_results=s.kstest(normed_datos,'norm')
print("Kolmogorov = ",kolmogorov_results)
shapiro_results=s.shapiro(col3)
print("Shapiro-Wilks = ",shapiro_results)
agostino_results=s.mstats.normaltest(col2)
print("D’Agostino = ",agostino_results)
anderson_results=s.anderson(normed_datos,'norm')
print("Anderson-Darling = ",anderson_results)
print()


print()
print("Test for homogeneity of variance: ")
print()
bart_result,p_value=s.bartlett(col1,col2,col3)
print('Bartlett test: ',bart_result,' p-value = ',p_value)
if p_value<0.05:
print("homoscedasticity is not met in the ANOVA")
print()
levene_result,p_value=s.levene(col1,col2,col3)
print('Levene test: ',levene_result,' p-value = ',p_value)
if p_value<0.05:
print("homoscedasticity is not met in the ANOVA")
print()

# ANOVA one-way print()
k=3 # Define the number of treated groups, i.e. 3 N=33 # Total data or individuals, i.e. 33 F_result, p_value=s.f_oneway(col1,col2,col3)
print ('One-way ANOVA')
print ('===============================')
print ('F value:', F_result)
print ('p-value:', p_value, '\n')
print()
print('Between Groups df = ', k-1)
print('Within Groups df = ',N-k)
print()
print('Total df = ', N - 1)
print ('===============================')
print()
mc = MultiComparison(col_x,col_Group)
result = mc.tukeyhsd()
print(result)
print(mc.groupsunique)
print()
print()
# Kruskal-Wallis print()
H_result, p_value=s.kruskal(col1,col2,col3)
print ('Kruskal-Wallis H-test')
print ('===============================')
print ('H value:', H_result)
print ('p-value:', p_value, '\n')